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I. INTRODUCTION

In [3], de Leeuw identifies the saturation class for the Bernstein
polynomials. His result states that BrJ - f = 0(1 In) if and only ifl' E Lip 1
on [0, 1]. This was later refined by G. Lorentz [10] to the following.

THEOREM (1.1). Iff is a function, continuous on [0, I], then

I Bn(f, x) - j(x): ~ ~(Mln) x(1 - x),

for x E [0, 1], n ~ 1, is equivalent to l' E LipM 1 on [0, 1].

The method of proof used by Lorentz has also been applied to other
approximation procedures [4, 14, 15].

Our purpose in this paper is to present a new proof of this theorem as
well as give several generalizations of it. The novelty in our approach lies
in the use of semigroup methods similar to those developed by Butzer and
Berens [I].

At first it may seem that the applicability of semigroup methods is doubtful
since the Bernstein polynomials do not form a semigroup. However, we can
generate in a natural way a semigroup of operators from the Bernstein
polynomials. This is accomplished by iterating the Bernstein polynomials as
was done in (6].

Briefly, we iterate the Bernstein polynomials in the following fashion: B~n

where k n is a non-negative integer such that knln tends to t as n tends to 00.

We prove that the limit of the sequence of operators B~n is a semigroup of
class (Co), :J(Jt. The identification of the saturation class for the Bernstein
polynomials is now facilitated by relating it to the saturation class of :J(Jt

which can be determined by semigroup methods.
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2. SEMIGROUPS

We incorporate in this section the necessary results concerning semigroups
of operators that will be needed in our development.

Let X be a Banach space and {T1: f OJ a one-parameter family of
bounded linear operators mapping X into itself. {Tt : t 0; is said to be a
semigroup of class (Co) on X provided that

(i) To 1,

(ii) 1'1 TIT, f, s O.
(iii) lim H \+ Tfx ~= x X E' X.

The infinitesimal generator of the semi group is defined as

Ax = lim (J> X)/f,
1->0 '

whenever this limit exists.
To state the result about {T1J which serves fundamentally in our investi

gation we need additional notation. Consider a linear map 1': D(1') -+ X.
D(T) ex. The powers of l' are defined recursively

TO = J. and 1" cc T(P-1), r I.

xc D(P) iff x EO D(T' 1) and p--1X E D(T).

Let us denote the pairing between X and its dual x* by '/,

(F, x) = F(x), Fc= X'. X E X.

Suppose Tis a densely defined linear operator on X. The adjoint operator 1'''
of Tis the linear operator whose domain consists of the set of all F EO X* for
which there exists aGE X* such that (G, x (F, Tx), for all x E D(T);
in this case we set 1'*F = G.

THEOREM 2.1. Let {1'1: f O} be a semigroup of class (Co) and r a non-
negative integer, then

lim <F J!.t..._J)r~\~_,> -~ «A*')' F, X),
f->()-!-' rl' /

for FE D(A *'Y) and any x E X.

Proof The proof proceeds by induction on r. We make use of some basic
results about semigroups which can be found in [I]

.Y,

1'1.'1'-- X= A r' T,x da,
• 0

1 j./lim ~ Tux da
I~O+ t '0

MeB1 , M, fJ constants.

(2.1 )

(2.2)

(23)
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Using (2.1) and (2.2) we obtain for FE D(A *)

lim (F, Ttx - X) = lim (F, A! It Tax da)
t~o+ t t-,>o+ t 0

(
1 /,t )

= lim A*F, - Tax da
r-'>o+ t '0

-= (A*F, x),

(2.3) yields the inequality

Thus, we have proved for the case r ,= 1,

3

and

lim (F, (Tt -;; I)' x) = «A*)' F, x),
t-"'o+

FE D((A *)'), x E X, (2.4)

(2.5)

We will prove that (2.4) and (2.5) hold for all r by induction. Suppose (2.4)
and (2.5) are correct for some k > 1. Let F E D((A*)k+l). Then A*F~= D((A *)k)
and so referring to (2.1) we have

(
F (Tt - I)k+1 X) = (A*F ! r. t T (Tt - I)k X da)
'tk+1 ' t . 0 0 t k

= ! r(A *F, (Tt --: 1)k TaX) du.
t "0 t

Invoking the induction hypothesis it follows that

I(F, (Tt ~+~)k+l x)1 ~ Mk II(A*)k+l FII ek [l3[t ff II TaX II fla

".-::; Mk+lll(A*)k+l FII e(k+1)! 13 l t II x II,

and so (2.5) is validated for k + 1.
To advance induction hypothesis for (2.4) we write



4 MICCHELLI

The second term converges to «A *y [IF x as t -->- 0 I by virtue of the
induction hypothesis. The first term approaches zero since

x)du I
I

I .1 ( (T Iji
t J) A *F'--!--fi--- (Tnx

(A*jI' I F AF cl. ,j Ill"
t . 0

7;,x -- x duo

Therefore, (2.4) is also established for k I and the proof is complete.
For the application of Theorem 2.1 it is necessary to be able to identify A *.

This is made easier by introducing the concept of smooth subspace.

DEFINITION 2.1 [2]. Let X be a Banach space. A dense linear subspace of
X will be called a smooth subspace of the semigroup {Tt : t O} provided that

for all 0,

and M C D(A).
The following theorem due to de Leeuw [2] shows that the notion of

smooth subspace is a useful one.

THEOREM 2.2. Let M be a smooth subspace of the semigroup of class (Co),

{Tt : to]. Then
A* (A M)*,

where A : M denotes the restriction o{.4 to M.

3. BERNSTEIt" POLYNOMIALS

As usual qo, I] will denote the space of continuous real-valued functions

defined on [0, 1] normed with the sup-norm which we denote by Ii . ii.
The nth Bernstein polynomial off is defined as

. _ ". k)11I _I.
8,,(/(s), _x)- A~/ ~n \k) _x( I X)" I..

We note some properties of B n . These can all be found in [9]. First of all,
they are positive linear operators on C[O. I], which leave invariant any linear

function. Hence, II B n ,i =~ I.
For k 11, B n maps the set of polynomials of degree k into itself. In

particular, it can be verified that

Bn(s(l-s),x)

Bn((x - S)2, x)

(I - (l/n)) x(l - x),

(lIn) x(l - x).

(3.1 )

(3.2)
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Consequently. limn_>co Bn(j, x) = I(x) uniformly for x E [0,1], whenever
fE C[O, 1].

Another fact important in the study of the Bernstein polynomials is the
inequality

° Tn ,(x) ° x I, (3.3)

where A is a constant depending only on sand

Finally, we should like to note the well known asymptotic formula due to
Voronowskaja.

lim n( BnCf, x) - f(x)) ~= ~.\( 1-- x) rex).
n--:·"J-

This is valid provided I has a second derivative at x E [0, I]. Moreover, the
convergence is uniform in x, wheneverf" is continuous on [0,1].

We now turn our attention to the iterates of B" . Let An = n(B" - I), then

A ),.-"
---"'-0= f~(A n ).n .

where

In(z) = (1 + (z/n»"'.

Noting that lim,,~x:fn(z) = etz uniformly on compact subsets of the plane,
whenever k"ln -+ t and

lim AnCf, x) == AU; x)o=~x(l- x)f"(x),
11 ;>I

r E C[O, I],

we might expect that limn_.x: B:~n = etA. This is, in fact, the case and can be
proven by restricting the Bernstein polynomials to the subspace of poly
nomials of a fixed degree. In this way, the operators become ordinary matrices
and convergence then follows immediately. The convergence persists on all of
C[O, 1] since polynomials are dense and Bn has norm 1.

THEOREM 3.1. There exists a semigroup {01 t : t
such that

OJ ofclass (Co) on qo, I]

ll'henerer lim (knln) = t,
n ," y:-

for all t °and I E C[O, 1]. {01 t : t O} is a positive contraction semigroup.
Its infinitesimal generator A has the property that whenever rp is an infinitely
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differentiable function having support interior to [0, I] and Fq,( g) ,~,

S~ ep(x) g(x) dx then F<r E D(A *) and

where (A*ep)(x) = Ox(l - x) ep(x)".Moreover, the following inequality is
valid

il(l/t)(.%'tf - f) - gil :S; lim Iln(8,,/ - f) - g
n-HD

for any j; g E C[O, 1] and t O.

./

(I/t) I Bag du
• 0

Proof Let ° I :S; n. For convenience we do not distinguish between B n

and its restriction to the linear space of polynomials of degree less than or
equal to I which we denote by PI . Bn maps Pi isomorphically into itself.
Moreover, if p E PI , we have

Hence,

lim n(BnP - p)
/I--,'-J:;

Ap. (3.4)

The last equality follows from (3.4) and

Iimj~(z) = lim (I + (z/n)"n= e/ z
•

/I-'if.; /l~CXJ

Thus, we have established the convergence of the iterates for polynomials.
However 11 Bnk II = I for all nonnegative integers k and 11. Therefore, the
limit exists for aUfE C[O, I].

On polynomials we have the explicit representation

for.%'t. This is sufficient to verify that.'JiJt is a semigroup of class (Co) if one
keeps in mind that II fJ?J t II = 1. Moreover, we see that every polynomial p is
in D(A) and

A(p, x) = tx(l - x)(d2/dx2
) p(x).

An integration by parts can be utilized to verify that identity
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whenever p is a polynomial. But polynomials form a smooth subspace of ,di t

and so according to Theorem 2.2, we infer that F;( E D(A *) and

The inequality is now the only remaining assertion to be proved. Let k
be a positive integer then

" -1

B/I -- f = I Bnj(BnJ- n,
j~O

I _ 1 Ie-I . . .

t (B)/I- .t) -- g = t I Bn'(Bnf--.t)- g
j~f)

1 1.-1

Ilf I Bn j[n(8nf- f) -- g]
)=0

Therefore,

I I. 1
'1\ B I(t/Iii... nb
I--~()

(T
,~.

I B I" f- ( . 'I ~ ) - gtn.. . .L i nCB (- f) - ~.nt' n. . ,

" I Ie-I

-+-11- I BnJg
, 1/ t j-f)

- (T
,~

We will be finished provided that we prove

(3.5)

for g c qo, I]. Again, since II(l/n) L;:~-l Bnjg t I, g,l it will suffice to
prove (3.5) in the case of polynomials. Let p be a polynomial of degree
Then

where Fn(z) is defined as

F,Jz)
I [ntJ-l , ~. j

- I /1+ -'"-1)
1/ F-II \

as 1/ tends to 00, Fn(z) approaches (e tz - 1)/z uniformly on compact subsets
of the plane. We, therefore, can infer the validity of (3.5).

Rel/wrk. Trotter studied in [16] the question of convergence of sequences
of semigroup on B-spaces. Theorem 3.1 is partially subsumed by his more
general results. However, in the case under consideration the proof we
presented is direct and elementary. Another elementary proof of the conver
gence of the iterates was given in KeJisky and Rivlin [6].
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THEOREM 3.2. Let f be a real-valued function defined 0/1 [0, 1] then (i)
through (iii) are equivalent statements.

(i) ]j'(x) - j'(Y)1

(ii) I Bn(/, x) - f(x)]

(iii) I :!IJt(/' x) - f(x)]

Moreover,

Mix-YI, X,YE[O, I], (j'ELipul).

(MI2n) x(I-- x), II I, X E [0, I].

(MtI2) x(l - x), t 0, X E [0, I].

(iv) if lim Iln(Bnf f)-- g '] = 0,
n-)X!

where/, g E qo, 1] then!" E qo, I) and tx(l -- x)!"(x) = g(x), °< x < I.

Proof (i) => (ii). We follow the analysis in [10]

f(x) - f(s) = f' ret) dt = f'(x)(x - s) - .c (t- s) df'(t)

If(x) - f(s) - f'(x)(x - s)1 ::;: M Ir (t - s) dt I = ~ (x - S)2.

Since B n is a positive operator we can operate on the variable s in the
previous inequality and obtain

If(x) - Bn(/, s) - j'(x)(x - BnCs, x))l :( (MI2) Bn«x - S)2, x)

I Bn(/, x) - f(x)] :( (MI2) Bn«s - X)2, x).

(ii) now follows from (3.2).

(ii) => (iii)
he-I

Bnk(f, x) - f(x) = I Bnl(Bnf - f; x).
I~O

Thus,

Mk 1

I Bn"V, x) - f(x)] :( -2 I Bn(s(l - s), x).
II I~O

Making use of (3.1) the right side simplifies to

(MI2)[1 - (1 - IlnY] x(l - x).

Therefore, passing to the limit

I .oil/, x) - f(x)1 :( (MI2)(1 - e-t) x( 1- x) (MI2) tx(\ -- x).
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(iii) => (i). Let <p EO Cow(a, b), an infinitely differentiable function whose
support is interior to [a, lo]. Set

\ ( ) = JX !:J81/nU, a) - f(a) d
/\n X 12 a ta(l __ a) a, X EO [a, lo].

Then I '\n(X) - '\n(x)i ~ M I x - Y i, for x, Y E' [a, lo] and '\n(a) = 0. Hence,
by the Helly selection theorem there exists a sequence 12k -)- CI) such that

and

lim ,\nJx) = '\(x) ,
k-tx;

all x EO [a, lo],

J
b b

li!1l g(x) d'\nk(x) = J g(x) d'\(x),
a a

for g EO C[a, lo].

Observe also that '\(x) is in LipM I on [a, lo].
Employing Theorem 2.1 and Theorem 3.1, we obtain

• b .]

lim J !x(1 - x) <p(x) d'\nk(x) == J (lx(1 - x) <p(x))" f(x) dx.
k-,XJ a 0

Thus,

f!X(1 ~ x) <p(x) d'\(x) = f (!x(1 - x) <p(x))" f(x) dx"
a a

Integrating by parts twice

r <p"(x) [J(x) - r ,\(t) cit] clx = 0,
(~ a

all <p EO CoW(a, b).

We deduce as in Lorentz [10] thatf(x) - S: '\(t) dt is a linear function. This
establishes (iii). The proof of (iv) proceeds similarly from the inequality
proven in Theorem 3.1.

This method of iteration can be utilized to prove certain other known
properties of the Bernstein polynomials. For instance, it was first proved in [3]
that:1 Bnl - fli = 0(1/12) if and only iflis a linear function on [0, I].

Let us show how this can be easily proven by iterating the Bernstein
polynomials. If we assume that II Bnl - III = 0(1/12), then

where En tends to zero as 12 tends to 00.
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Choose a sequence {k n } of integers so that lim" .., (k", II) ex and
lim,,_, (k,,!/I) (" '-- O. Then Ii 111"".,. H~;~r = f However. Kelisky and Rivlin [6]
proved that [im ll_, B~'f -, BJ}; for all IE qO. I]. Therefore. BJ' fwhich
is the desired conclusion. We remark lhal;l similar proof gives the "little 0"

theorem for the Bernstein polynomials on the N-cube or .V-simplex [I J].
As anolher application of the method of iteration we pr(lw Ihal

SoU. x) ~ ftx). " I. .\" C [0. I]. 0.6)

for fE qo, I] iff f is convex on {a, I J. One way is tllllllcdiall:, In fact. iff is
convex then (3.6) follows from Jensen's inequality. Comersely. if p.6) is
valid then upon iteration, we obtain

diU x) .y fIX). o. xl~IU.ll·

Let r/> be a nonnegative function in Co' (0, I). Ihen

()
, 1 01 "'(xl _

11111 _. J 1.:----- {J.1'r( I . .r) - f(x)] dx
1_0' I (I :]'_\(1 -- x)

.,
I 4>"(.1"1 ((xl d.\".
."

Thus.fis t.:OIlVCX.

4. GENERALlZATIO:-"S

We give several other examples for which our method i~ applicable.

EXAMPLL I.

polynomial~ is
From [5]
suggested.

the following generalization of the Bernstein
Let F be a probability gCl1CnHing function

Define

nx) .7_ L G"S",
,,_u

ilild L (/"
"

I.

For instance. if F(s) = e" I it is readily verified that

P'/; = C) U/Il)j (1·- illl)'· "

Deline P,,: qo, 11- C(X,,). X o =- lOIn, 'ifl ..... /1///:

"
P,,(f ;/1/) =- L P7;}(JIJI).

; ·0

(4.1)

(4.2)

l4.3)
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In the case of F(s) = eS
-

1 we see that Pn(f, iln) agrees with the Bernstein
polynomials at iln

Pn(f, iln) == Bn(f, iln). (4.4)

(4.4) suggests interpolating the values {Pn(f, iln)}i~o with a polynomial of
degree n. If we caJ] the operator thus formed Rn(f, x), then (4.4) insures that
these certainly generalize the Bernstein polynomials. But, obviously, we
cannot expect that R,,(f, x) converges to f(x) for every continuous function
as the case F(s) = s attests. In this case R,,(f, x) = Ln(f, x), where Ln(f, x) is
the Lagrange polynomial of degree n which interpolates! on X" . A possible
alternative is to use a different polynomial basis. For instance

n

T"U; x) = I PnU; kin) (;1) x"'(1 -- X}"--1'.
k~O ,J(

(4.5)

This sequence of operators form a proper generalization of the Bernstein
polynomials in the sense that Tnf converges to Ifor all continuous functions.
Nevertheless, it is not known under what conditions on the generating
function F(s) would insure that Rnlalso has this property. The saturation class
of the family of operators {Tn} is identified in Theorem 4.2. Define

A,1I = ~()eff of zn-~ inln- 2)(z)(f'(Z))2
2 coeff of zn in (f'(z))n

We can easily verify that

where w(f, 0) is the modulus of continuity off
In [17, 13], it was shown that whenever !"(l) < OC!

lim 11(1 - A2
n ) = y ?: 0.

11- ~ f.;

Consequently, we see that the rate of approximation of a continuous function
I by either Bnlor Pnf is the same. Also, in [17] and [13], it was shown that

lim II p[ntJ/ --!J?J III = °i n J "It n .
n-' X \

Hence, proceeding as in Theorem 3.2 the following can be proved.

THEOREM 4.1. Let IE qo, 1] and suppose y > 0, then (i) l' E LipM 1 on
[0, 1] (If

I Pn(f, iln) - f(iln)J ~ tM(1 - A2
n)(iln)(1 - iln), °~ i ~ n.
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(ii) Illimn~cy II n(P,J~1)- g

f"EC(O, I) and (y/2)x(1

°and g E qo, I] then

x)f"(x) g(x). 0 x < J.

(iii) 1fll PrJ -- Iiin 0(1 -- IV) thenl is linear on [0. I].

(iv) .lis convex on [0, I] ifIPn(f, i/n)fUln). ° 11.

Note that from (4.4), Theorem 4.1 gives a stronger result for the Bernstein
polynomials than either Theorem 3.2 or (3.6).

EXAMPLE 2. Let {T,,: n OJ be a sequence of nonnegative linear
operators mapping qo, l] into itself. Suppose Tn J or B] for n ?; 2 and

(i) Tn preserves linear functions and

(ii) Tn takes quadratics into quadratic.

Such a sequence of operators necessarily satisfy

T,,(/;O)

T,J/; I)
flO).

f(I).
(4.8)

Moreover. from (ii) we see there exists a constant A" . °< \,
exists such that

Tn(s(l --s),x) 1\"x(1 Xl.

In the case that T" is the nth Bernstein polynomial i\n
more, if we assume that

I, (n - 2)

(4.9)

lin. Further-

lim An
n-.... f .

and lim(l
Il-'I

An) I T,,((x S)I. x) 0

(4.10)

uniformly in x on [0, I] then by using Taylor's theorem it can be shown that
for any I there exists a sequence E n ---+ °such that for every polynomial P E PI

,(I--I\,,)-][TnP p]~Apl. En P',

A(p, X) ~= ~x(l X) p"(X).

The constant C depends only on the degree of p. In particular, (4.10) holds
for ,.:8(1-,\,,) , and so we have for some Ell ---+ a

P E P, .

Since polynomials are invariant under .%'(]",,) . it follows that

Enk( I ,\,,)1 P .

Therefore. for allfE C[O,I]

lim T~,t(H,) IJj/JJ
fl-:>X

Proceeding as in Theorem 3.2 we can show the following.
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THEOREM 4.2. Let IE qo, I] then

(i) T,,(f, x) - f(x)] (M(2)(l - An) x(l - x) iland only ifF E LipM 1.

(ii) limn~x !:(l ~~- An)-l(Tnl - f) - g!! 0, g E qo, I], implies

f" E C(O, I) and ~x(l - x)f"(x) c= g(x) on [0, I].

(iii) /1:1 T"f - I! = o( I -- An), then I is linear on [0, I].

(iv) Tn(f, x) f(x) if and only iff is conrex on [0, I].

Let us now return to the Bernstein polynomials. We define for k. a non
negative integer, the sequence of linear operators

kk
1- (1- BnY= -- I (-I)" ( ~) Bri·

1'0_=0 v,

If w(f, 8) is the modulus of continuity of fthen one can easily verify

i Un.I"U; x) - f(x)1 (3/2)(2" -- I) wU; 1/\//1).

It appears then that Un,d provides no better an approximation to I than
Bnf itself. However, unlike Bn , we can improve the order of approximation
beyond O(1/n) for sufficiently smooth functions.

THEOREM 4.4. Suppose k is a nonnegative integer. [fIJ' ,... J(21,HI are in
qo, I] and f(2k+l1 E Lip I on [0, I], then

uniformly for x E [0, I).

Proof. Define

where M[f(2I., 11] IS the Lipschitz constant for f(21.~11). We will prove by

induction that

, Un ,l.lf, x) - f(x)! Ck iif:k
nl, I-I

C k is a constant independent ofn,fand x E [0,1]. The case k == °is covered
in Theorem 3.1. Suppose the theorem is correct for all j < k and letfsatisfy
the hypothesis of the theorem, then
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Using the positivity of Bn we have

According to (3.3) we can rewrite this inequality as

. ~k f(/)(x)
(B n - n(f, x)== I -II-,-- Tn.l(x) + gn(X),

1=~=2 • /1

where

i grlx)i

The functions

1= 2, ... , 2k,

satisfy the hypothesis of the theorem for the integer k l == [k=- 112). Since
k l < k for I =~~ 2, ... , 2k, the induction hypothesis implies

But Tn.rll! n[I/2] is a polynomial of degree I which is uniformly bounded in n,

and, moreover, il(Bn - I)i II 2i for j :::: Q. Therefore, we obtain

1= 2, ... , 2k.

Combining our inequalities yields

1 Un.ki1U; x) - f(x)]

\ 2k /1[l/2] I 2kak I .,'
)bk 22 n k,ll7JT T nk+! \ II/Ik

2kak I. blc(2k - I) II f·'I ..
nkl1 '. I Ie

Therefore, the theorem is valid for k and the induction is complete.

THEOREM 4.5. Let f E qQ, I] and k be a nonnegative integer. If

] U (f) f()] ~ Mx(l - x) (I)
n.k+! , X -. x "'" 2n,.+1 + 0 flI,'0 '
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uniform/yfor XE[O, 1]. ThenflilEC(O, 1), i c= 0.1, ... ,2k - I and All, the
kth power of the operator (Af)(x) =§x( I - x)f"(x). has a continuous
extension to [0, I) whose deriratil'e is in Lip,\1 I.

j--l

Proof. Set Sf,,, LI 0 Bn'. Then

and (4.11 )

Moreover, S",! is a positive operator with ii S".! ii j, and (4.11) implies

(B/- 1(~1 (4,12)

Iff satisfies the hypothesis of the theorem then

!(Bn! -- 1/ ,1 u: X)i,:;'2,~1 S7,~,I(S( I -- S), x)- /' 10 ( ,/1\'

S;,I"l(S( I - S). x) c III, 1[I -- (I - An)!Jk+l x( l-Y).

Letting j = [nt) yields in the limit

(.35'/- IV I(I. x), - (M/2) tk+lx(l - x).

Suppose ep E Corr(a, b), 0 < a < b < I and Fq,(g) c-c J~ ep(x) g(x) dx,
Theorem 3.1 implies Fo E D«A *)1'1) and (A *)'.+1 Fer = FC4*lk+1",. Define

a x ~ h.

Making use of Theorem 2.1 and the Helly selection theorem, as in
Theorem 3.1. we are assured that there exists a AE LipA! 1 on [a, b] such that

.i,

j tx( 1- x) (p(x) dA(X)
a

~!JI «A*)k+1 cp)(x)f(x) dx,
• a

for all cp E Co'X.(a, b). Integration by parts yields a function G E era, b) such
that GUl E qa, hJ. i -c 0. I ..... 2k + I,

(AI'G)' = A. on [a, b]

and
.1-I (A *)" -1 'p(x) F(x) dx = O.

~- (I

where F(x) = f(x)-- G(x).
It follows by an elementary argument that FE (""[a, bJ and

(AI'pnx) =, 0, X E [a, b].
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This impliesfli) E C[a, b], i = 0, I, ... , 2k + I and (Ali)' E LipA! I on [a, b].
Since a and b(a < b) were chosen arbitrarily from (0, 1) we have AkfE C(O, 1)

and (A'!)' E LipA! I on (0, I). The desired conclusion is hereby established.

COROLLARY 4.2. Let f be a real-valued function defined on [0, 1]. If
i Vn,k+l(f, x) - f(x)1 = o(1/nk,l) uniformly all [0,1], thenfis linear on [0, I].

Proof

li(Bnj - IY+lfll :c;; )"1 1 II Vn,k+lf - fll ::;. U/n)k+1 nk11 il Un,kLlf - 11

Hence, there exists a sequence Un} of integers such that 1n/n -->- 00,

limn~ce (B~n - I)k+lf = 0. 11 was previously pointed out that

whenever Un/n) -->- 00. Therefore, (B1 - IyI1(f, x) == 0. Taking advantage of
the relationship B12 = B1 , we see that

Thus,f= Bd

Remark. In light of the recent interesting work of Lorentz and
Schumaker [11] we would like to comment on the range of applicability of
our method.

With a few appropriate modifications, it can be extended to positive linear
operators on e[O, 1] which have the following asymptotic formula

Tn(f, x) = f(x) + 1a(x) D2Dd(x) + o(1/An),

where limn_>cc An = 00, a(x) :> 0, D;j(x) = (d/dx)(f(x)/ W;(x)), and °< a <:
Wi(x) < b. We also require a(x) > °in (0, 1). Otherwise. An may not be the
order of saturation. If we denote

<Po(X) = Wo(x).

<P1(X) = Wo(x)r W1(a) da.
o

a(x, y) = - .(' Wo(x) rW1(a) da dt,

then

lim An il Tn<Pi - <Pi II = 0, i ~~ 0, 1,
n-NJ

lim AnTn(a(', y), y) = a(y).
n-)'X
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Thus, whenever the iterates of Tn converge to a semigroup (conditions on a(x)
can be formulated insuring convergence by using the results in [7" 12]) then

i Tn(f, x) - f(x)[ (I/XTI )(Mu(x) + 0(1)),

if and only ifjE LipM 1.
We would also like to note that in [13] several other approximation

procedures are considered from the point of view of iteration. These include
convolution approximation procedures for 27T-periodic functions and certain
"expected value" approximation procedures on the infinite and semi-infinite
line.

Remark. It has been brought to the author's attention that there is some
duplication between this paper and work done independently by R. Schnable,
Zum Globalen Saturationsproblem der Folge der Bernsteinoperatoren,
Acta. Sci. Math. (Szeged) (to appear). He used similar methods to prove
Theorem 3.2.
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